Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Ann Anat ; 252: 152194, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056781

ABSTRACT

BACKGROUND: Dopamine is reduced in the brain of rats treated with fipronil, a broad-spectrum insecticide. VGF (no acronym) is a neurotrophin-inducible protein expressed as the 75 kDa form (precursor or pro-VGF) or its truncated peptides. VGF immunostaining has been revealed using an antibody against the C-terminal nonapeptide of the rat pro-VGF in the nerve terminals of the rat substantia nigra, where it was reduced after 6-hydroxydopamine treatment. It is unknown whether pro-VGF and/or its shortened peptides are present in these neurons. Therefore, the aim of this study was first to determine which types of VGF are expressed in the normal substantia nigra (and striatum) and then to determine VGF modulations and whether they occur in parallel with locomotor changes after fipronil injection. METHODS: Rats were divided into two groups that received a unilateral intranigral infusion of either fipronil (25 µg) diluted in dimethyl sulfoxide (DMSO) or DMSO alone, and then were tested for locomotor activity. An untreated group of rats (n=4) was used for identification of the VGF fragments using high performance liquid chromatography-mass spectrometry and western blot, while changes in treated groups (fipronil vs DMSO, each n=6) were investigated by immunohistochemistry using an antibody against the rat pro-VGF C-terminal nonapeptide in parallel with the anti-tyrosine hydroxylase antibody. RESULTS: In untreated rats, the VGF C-terminal antibody identified mostly a 75 kDa band in the substantia nigra and striatum, supporting the finding of high-resolution mass spectrometry, which revealed fragments covering the majority of the pro-VGF sequence. Furthermore, several shortened VGF C-terminal forms (varying from 10 to 55 kDa) were also found by western blot, while high-resolution mass spectrometry revealed a C-terminal peptide overlapping the immunogen used to create the VGF antibody in both substantia nigra and striatum. In the substantia nigra of fipronil-treated rats, immunostaining for tyrosine hydroxylase and VGF was reduced compared to DMSO-treated rat group, and this was related with significant changes in locomotor activity. CONCLUSION: Fipronil has the ability to modulate the production of pro-VGF and/or its C-terminal truncated peptides in the nigrostriatal system indicating its intimate interaction with the dopaminergic neurotransmission and implying a potential function in modulating locomotor activity.


Subject(s)
Dopamine , Pesticides , Pyrazoles , Rats , Male , Animals , Dopamine/metabolism , Rats, Sprague-Dawley , Pesticides/metabolism , Dimethyl Sulfoxide/metabolism , Corpus Striatum/metabolism , Nerve Growth Factors/metabolism
2.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139446

ABSTRACT

Excessive predominance of pathological species in the gut microbiota could increase the production of inflammatory mediators at the gut level and, via modification of the gut-blood barrier, at the systemic level. This pro-inflammatory state could, in turn, increase biological aging that is generally proxied by telomere shortening. In this study, we present findings from a secondary interaction analysis of gut microbiota, aging, and inflammatory marker data from a cohort of patients with different diagnoses of severe mental disorders. We analyzed 15 controls, 35 patients with schizophrenia (SCZ), and 31 patients with major depressive disorder (MDD) recruited among those attending a community mental health center (50 males and 31 females, mean and median age 46.8 and 46.3 years, respectively). We performed 16S rRNA sequencing as well as measurement of telomere length via quantitative fluorescence in situ hybridization and high-sensitivity C-reactive protein. We applied statistical modeling with logistic regression to test for interaction between gut microbiota and these markers. Our results showed statistically significant interactions between telomere length and gut microbiota pointing to the genus Lachnostridium, which remained significantly associated with a reduced likelihood of MDD even after adjustment for a series of covariates. Although exploratory, these findings show that specific gut microbiota signatures overexpressing Lachnoclostridium and interacting with biological aging could modulate the liability for MDD.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Male , Female , Humans , Gastrointestinal Microbiome/genetics , Depressive Disorder, Major/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , In Situ Hybridization, Fluorescence , Aging/genetics , Clostridiales
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446110

ABSTRACT

Parkinson's disease (PD) is an incurable neurodegenerative disease that is rarely diagnosed at an early stage. Although the understanding of PD-related mechanisms has greatly improved over the last decade, the diagnosis of PD is still based on neurological examination through the identification of motor symptoms, including bradykinesia, rigidity, postural instability, and resting tremor. The early phase of PD is characterized by subtle symptoms with a misdiagnosis rate of approximately 16-20%. The difficulty in recognizing early PD has implications for the potential use of novel therapeutic approaches. For this reason, it is important to discover PD brain biomarkers that can indicate early dopaminergic dysfunction through their changes in body fluids, such as saliva, urine, blood, or cerebrospinal fluid (CSF). For the CFS-based test, the invasiveness of sampling is a major limitation, whereas the other body fluids are easier to obtain and could also allow population screening. Following the identification of the crucial role of alpha-synuclein (α-syn) in the pathology of PD, a very large number of studies have summarized its changes in body fluids. However, methodological problems have led to the poor diagnostic/prognostic value of this protein and alternative biomarkers are currently being investigated. The aim of this paper is therefore to summarize studies on protein biomarkers that are alternatives to α-syn, particularly those that change in nigrostriatal areas and in biofluids, with a focus on blood, and, eventually, saliva and urine.


Subject(s)
Body Fluids , Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Biomarkers , Body Fluids/metabolism , Brain/metabolism
4.
Front Immunol ; 14: 1157149, 2023.
Article in English | MEDLINE | ID: mdl-37383228

ABSTRACT

Introduction: The pathogenesis of neuropsychiatric systemic lupus erythematosus (NPSLE) is widely unknown, and the role of autoantibodies is still undetermined. Methods: To identify brain-reactive autoantibodies possibly related to NPSLE, immunofluorescence (IF) and transmission electron microscopy (TEM) on rat and human brains were performed. ELISA was used to reveal the presence of known circulating autoantibodies, while western blot (WB) was applied to characterize potential unknown autoantigen(s). Results: We enrolled 209 subjects, including patients affected by SLE (n=69), NPSLE (n=36), Multiple Sclerosis (MS, n=22), and 82 age- and gender-matched healthy donors (HD). Autoantibody reactivity by IF was observed in almost the entire rat brain (cortex, hippocampus, and cerebellum) using sera from NPSLE and SLE patients and was virtually negative in MS and HD. NPSLE showed higher prevalence (OR 2.4; p = 0.047), intensity, and titer of brain-reactive autoantibodies than SLE patients. Most of the patient sera with brain-reactive autoantibodies (75%) also stained human brains. Double staining experiments on rat brains mixing patients' sera with antibodies directed against neuronal (NeuN) or glial markers showed autoantibody reactivity restricted to NeuN-containing neurons. Using TEM, the targets of brain-reactive autoantibodies were located in the nuclei and, to a lesser extent, in the cytoplasm and mitochondria. Given the high degree of colocalization between NeuN and brain-reactive autoantibodies, we assumed NeuN was a possible autoantigen. However, WB analysis with HEK293T cell lysates expressing or not expressing the gene encoding for NeuN protein (RIBFOX3) showed that patients' sera carrying brain-reactive autoantibodies did not recognize the NeuN corresponding band size. Among the panel of NPSLE-associated autoantibodies (e.g., anti-NR2, anti-P-ribosomal protein, antiphospholipid) investigated by ELISA assay, only the anti-ß2-glycoprotein-I (aß2GPI) IgG was exclusively found in those sera containing brain-reactive autoantibodies. Conclusion: In conclusion, SLE and NPSLE patients possess brain-reactive autoantibodies but with higher frequency and titers found in NPSLE patients. Although many target antigens of brain-reactive autoantibodies are still undetermined, they likely include ß2GPI.


Subject(s)
Autoantibodies , Lupus Vasculitis, Central Nervous System , Humans , Animals , Rats , HEK293 Cells , Brain , Autoantigens , Immunoglobulin G
6.
Tissue Cell ; 68: 101471, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33348234

ABSTRACT

BACKGROUND: The TLQP-21 peptide potentiates glucose-stimulated insulin secretion, hence we investigated its endogenous response to glucose. METHODS: Fasted mice received intraperitoneal glucose (3 g/kg), or saline (controls), and were sacrificed 30 and 120 min later (4 groups, n = 6/group). We investigated TLQP-21 in pancreas and plasma using immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and high performance liquid chromatography (HPLC), as well as TLQP-21 receptors (gC1q-R and C3a-R1) expression in pancreas by immunohistochemistry. RESULTS: In pancreas, TLQP-immunoreactivity (TLQP-ir.) was shown in insulin-, glucagon- and somatostatin-containing cells. Upon glucose, TLQP-ir. decreased at 30 min (∼40 % vs. controls), while returning to basal values at 120 min. In all groups, C3a-R1 was localized in ∼50 % of TLQP labelled islet cells (mostly central), while gC1q-R was detected in ∼25 % of TLQP cells (mainly peripheral). HPLC fractions of control pancreas extracts, assessed by ELISA, confirmed the presence of a TLQP-21 compatible-form (∼2.5 kDa MW). In plasma, TLQP-ir. increased at 30 min (∼30 %), with highest concentrations at 120 min (both: p<0.05 vs. controls), while HPLC fractions showed an increase in the TLQP-21 compatible form. CONCLUSIONS: Upon hyperglycaemia, TLQP-21 would be released from islets, to enhance insulin secretion but we cannot exclude an autocrine activity which may regulate insulin storage/secretion.


Subject(s)
Glucose/metabolism , Peptide Fragments/blood , Animals , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Enzyme-Linked Immunosorbent Assay , Male , Mice , Pancreas/metabolism , Receptors, Cell Surface/metabolism
7.
Neuropsychopharmacology ; 45(13): 2229-2238, 2020 12.
Article in English | MEDLINE | ID: mdl-32919410

ABSTRACT

Individuals with severe psychiatric disorders have a reduced life expectancy compared to the general population. At the biological level, patients with these disorders present features that suggest the involvement of accelerated aging, such as increased circulating inflammatory markers and shorter telomere length (TL). To date, the role of the interplay between inflammation and telomere dynamics in the pathophysiology of severe psychiatric disorders has been scarcely investigated. In this study we measured T-lymphocytes TL with quantitative fluorescent in situ hybridization (Q-FISH) and plasma levels of inflammatory markers in a cohort comprised of 40 patients with bipolar disorder (BD), 41 with schizophrenia (SZ), 37 with major depressive disorder (MDD), and 36 non-psychiatric controls (NPC). TL was shorter in SZ and in MDD compared to NPC, while it was longer in BD (model F6, 137 = 20.128, p = 8.73 × 10-17, effect of diagnosis, F3 = 31.870; p = 1.08 × 10-15). There was no effect of the different classes of psychotropic medications, while duration of treatment with mood stabilizers was associated with longer TL (Partial correlation controlled for age and BMI: correlation coefficient = 0.451; p = 0.001). Levels of high-sensitivity C-Reactive Protein (hsCRP) were higher in SZ compared to NPC (adjusted p = 0.027), and inversely correlated with TL in the whole sample (r = -0.180; p = 0.042). Compared to NPC, patients with treatment resistant (TR) SZ had shorter TL (p = 0.001), while patients with TR MDD had higher levels of tumor necrosis factor-α (TNFα) compared to NPC (p = 0.028) and to non-TR (p = 0.039). Comorbidity with cardio-metabolic disorders did not influence the observed differences in TL, hsCRP, and TNFα among the diagnostic groups. Our study suggests that patients with severe psychiatric disorders present reduced TL and increased inflammation.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Bipolar Disorder/drug therapy , Case-Control Studies , Depressive Disorder, Major/drug therapy , Humans , In Situ Hybridization, Fluorescence , Telomere
8.
Tissue Cell ; 65: 101368, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32746995

ABSTRACT

BACKGROUND: The VGF-derived TLQP peptides (TLQPp), a new potential drug target for obesity, are expressed in stomach, pancreas, adrenal gland as well as in adipose tissues, and, when exogenously injected, regulate energy expenditure and food intake. However, it is not clear if these peptides physiologically change in these organs in response to fasting. METHODS: Rats were subdivided into four groups: (A) fed ad libitum, (B) fed with restrictions (once a day) (C) fast for 48 h and (D) fast for 48 h and then fed 1 h before sacrifice. Immunosorbent assay was used to possibly reveal TLQPp changes upon fasting in plasma as well as in pancreas, adrenal gland, stomach and adipose tissues. In the latter organs, we also measured the levels of the VGF precursor protein while immunohistochemistry was used to investigate the presence of the TLQP-21 receptors. RESULTS: During fasting, TLQPp were down-regulated in the stomach (45 %), pancreas (47 %), adrenal gland (51 %) and WAT (45.2 %) in parallel with a significant increase in the blood (36.6 %), all versus ad libitum group. In the same organs where the TLQPp were decreased upon fasting, the VGF precursor levels were not changed. In ad libitum rats, TLQP-21 receptors were well represented within the same cells that expressed TLQPp, suggesting an autocrine activity to be better investigated. CONCLUSIONS: During fasting, TLQPp are probably produced and immediately secreted into the blood circulation, until the hypoglycaemia is counteracted.


Subject(s)
Fasting/metabolism , Peptides/metabolism , Animals , Male , Membrane Glycoproteins/metabolism , Neuropeptides/metabolism , Pituitary Gland/metabolism , Rats, Sprague-Dawley , Receptors, Complement/metabolism
9.
Mol Neurodegener ; 15(1): 36, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32552841

ABSTRACT

BACKGROUND: Diagnosis of dementia with Lewy bodies (DLB) is challenging, largely due to a lack of diagnostic tools. Cerebrospinal fluid (CSF) biomarkers have been proven useful in Alzheimer's disease (AD) diagnosis. Here, we aimed to identify novel CSF biomarkers for DLB using a high-throughput proteomic approach. METHODS: We applied liquid chromatography/tandem mass spectrometry with label-free quantification to identify biomarker candidates to individual CSF samples from a well-characterized cohort comprising patients with DLB (n = 20) and controls (n = 20). Validation was performed using (1) the identical proteomic workflow in an independent cohort (n = 30), (2) proteomic data from patients with related neurodegenerative diseases (n = 149) and (3) orthogonal techniques in an extended cohort consisting of DLB patients and controls (n = 76). Additionally, we utilized random forest analysis to identify the subset of candidate markers that best distinguished DLB from all other groups. RESULTS: In total, we identified 1995 proteins. In the discovery cohort, 69 proteins were differentially expressed in DLB compared to controls (p < 0.05). Independent cohort replication confirmed VGF, SCG2, NPTX2, NPTXR, PDYN and PCSK1N as candidate biomarkers for DLB. The downregulation of the candidate biomarkers was somewhat more pronounced in DLB in comparison with related neurodegenerative diseases. Using random forest analysis, we identified a panel of VGF, SCG2 and PDYN to best differentiate between DLB and other clinical groups (accuracy: 0.82 (95%CI: 0.75-0.89)). Moreover, we confirmed the decrease of VGF and NPTX2 in DLB by ELISA and SRM methods. Low CSF levels of all biomarker candidates, except PCSK1N, were associated with more pronounced cognitive decline (0.37 < r < 0.56, all p < 0.01). CONCLUSION: We identified and validated six novel CSF biomarkers for DLB. These biomarkers, particularly when used as a panel, show promise to improve diagnostic accuracy and strengthen the importance of synaptic dysfunction in the pathophysiology of DLB.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Dementia/diagnosis , Lewy Body Disease/cerebrospinal fluid , Aged , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cohort Studies , Female , Humans , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , Proteomics , tau Proteins/cerebrospinal fluid
10.
Pharmacogenomics ; 21(8): 533-540, 2020 06.
Article in English | MEDLINE | ID: mdl-32372689

ABSTRACT

Aim: To assess the role of lithium treatment in the relationship between bipolar disorder (BD) and leukocyte telomere length (LTL). Materials & methods: We compared LTL between 131 patients with BD, with or without a history of lithium treatment, and 336 controls. We tested the association between genetically determined LTL and BD in two large genome-wide association datasets. Results: Patients with BD with a history lithium treatment showed longer LTL compared with never-treated patients (p = 0.015), and similar LTL compared with controls. Patients never treated with lithium showed shorter LTL compared with controls (p = 0.029). Mendelian randomization analysis showed no association between BD and genetically determined LTL. Conclusion: Our data support previous findings showing that long-term lithium treatment might protect against telomere shortening.


Subject(s)
Antidepressive Agents/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Genome-Wide Association Study/methods , Lithium Compounds/therapeutic use , Telomere Shortening/drug effects , Adult , Antidepressive Agents/pharmacology , Bipolar Disorder/diagnosis , Female , Humans , Leukocytes/drug effects , Leukocytes/physiology , Lithium Compounds/pharmacology , Longitudinal Studies , Male , Middle Aged , Telomere/drug effects , Telomere/physiology , Telomere Shortening/physiology , Treatment Outcome
11.
BMJ Open ; 10(1): e032513, 2020 01 26.
Article in English | MEDLINE | ID: mdl-31988227

ABSTRACT

INTRODUCTION: Severe psychiatric disorders are typically associated with a significant reduction in life expectancy compared with the general population. Among the different hypotheses formulated to explain this observation, accelerated ageing has been increasingly recognised as the main culprit. At the same time, telomere shortening is becoming widely accepted as a proxy molecular marker of ageing. The present study aims to fill a gap in the literature by better defining the complex interaction/s between inflammation, age-related comorbidities, telomere shortening and gut microbiota in psychiatric disorders. METHODS AND ANALYSIS: A cross-sectional study is proposed, recruiting 40 patients for each of three different diagnostic categories (bipolar disorder, schizophrenia and major depressive disorder) treated at the Section of Psychiatry and at the Unit of Clinical Pharmacology of the University Hospital Agency of Cagliari (Italy), compared with 40 age-matched and sex-matched non-psychiatric controls. Each group includes individuals suffering, or not, from age-related comorbidities, to account for the impact of these medical conditions on the biological make-up of recruited patients. The inflammatory state, microbiota composition and telomere length (TL) are assessed. ETHICS AND DISSEMINATION: The study protocol was approved by the Ethics Committee of the University Hospital Agency of Cagliari (PG/2018/11693, 5 September 2018). The study is conducted in accordance with the principles of good clinical practice and the Declaration of Helsinki, and in compliance with the relevant Italian national legislation. Written, informed consent is obtained from all participants. Participation in the study is on a voluntary basis only. Patients will be part of the dissemination phase of the study results, during which a local conference will be organised and families of patients will also be involved. Moreover, findings will be published in one or more research papers and presented at national and international conferences, in posters or oral communications.


Subject(s)
Aging, Premature/etiology , Aging/physiology , Gastrointestinal Microbiome , Inflammation/complications , Mental Disorders/complications , Telomere Shortening , Telomere , Adolescent , Adult , Aged , Bipolar Disorder/complications , Case-Control Studies , Comorbidity , Cross-Sectional Studies , Depressive Disorder, Major/complications , Female , Humans , Italy , Life Expectancy , Male , Middle Aged , Research Design , Schizophrenia/complications , Young Adult
12.
Cells ; 10(1)2020 12 29.
Article in English | MEDLINE | ID: mdl-33383752

ABSTRACT

Background: Dementia with Lewy bodies (DLB) is a neurodegenerative disease where synaptic loss and reduced synaptic integrity are important neuropathological substrates. Neuronal Pentraxin 2(NPTX2) is a synaptic protein that drives the GABAergic inhibitory circuit. Our aim was to examine if NPTX2 cerebral spinal fluid (CSF) levels in DLB patients were altered and how these levels related to other synaptic protein levels and to cognitive function and decline. Methods: NPTX2, VGF, and α-synuclein levels were determined in CSF of cognitive healthy (n = 27), DLB (n = 48), and AD (n = 20) subjects. Multiple cognitive domains were tested, and data were compared using linear models. Results: Decreased NPTX2 levels were observed in DLB (median = 474) and AD (median = 453) compared to cognitive healthy subjects (median = 773). Strong correlations between NPTX2, VGF, and α-synuclein were observed dependent on diagnosis. Combined, these markers had a high differentiating power between DLB and cognitive healthy subjects (AUC = 0.944). Clinically, NPTX2 levels related to global cognitive function and cognitive decline in the visual spatial domain. Conclusion: NPTX2 CSF levels were reduced in DLB and closely correlated to decreased VGF and α-synuclein CSF levels. CSF NPTX2 levels in DLB related to decreased functioning in the visual spatial domain.


Subject(s)
C-Reactive Protein/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Lewy Body Disease/cerebrospinal fluid , Nerve Growth Factors/cerebrospinal fluid , Nerve Tissue Proteins/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , Aged , Biomarkers/cerebrospinal fluid , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged
13.
J Pathol ; 250(2): 134-147, 2020 02.
Article in English | MEDLINE | ID: mdl-31518438

ABSTRACT

Colorectal cancer (CRC) is the fourth cause of death from cancer worldwide mainly due to the high incidence of drug-resistance. During a screen for new actionable targets in drug-resistant tumours we recently identified p65BTK - a novel oncogenic isoform of Bruton's tyrosine kinase. Studying three different cohorts of patients here we show that p65BTK expression correlates with histotype and cancer progression. Using drug-resistant TP53-null colon cancer cells as a model we demonstrated that p65BTK silencing or chemical inhibition overcame the 5-fluorouracil resistance of CRC cell lines and patient-derived organoids and significantly reduced the growth of xenografted tumours. Mechanistically, we show that blocking p65BTK in drug-resistant cells abolished a 5-FU-elicited TGFB1 protective response and triggered E2F-dependent apoptosis. Taken together, our data demonstrated that targeting p65BTK restores the apoptotic response to chemotherapy of drug-resistant CRCs and gives a proof-of-concept for suggesting the use of BTK inhibitors in combination with 5-FU as a novel therapeutic approach in CRC patients. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Disease Progression , Drug Resistance, Neoplasm/drug effects , Drug Synergism , E2F Transcription Factors/metabolism , Fluorouracil/administration & dosage , Fluorouracil/pharmacology , Genes, p53 , Humans , Mice, Nude , Molecular Targeted Therapy/methods , Neoplasm Staging , Organoids/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/pharmacology , Transforming Growth Factor beta1/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
14.
Cell Tissue Res ; 379(1): 93-107, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31713727

ABSTRACT

Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra (SN). At disease onset, a diagnosis is often difficult. VGF peptides are abundant in the SN and peripheral circulation; hence, we investigate whether their plasma profile may reflect the brain dopamine reduction. Using antibodies against the VGF C-terminal portion, we analyzed the rat brain and human plasma, with immunohistochemistry and ELISA. Rats were unilaterally lesioned with 6-hyroxydopamine and sacrificed either 3 or 6 weeks later with or without levodopa treatment. Plasma samples were obtained from PD patients, either at the time of diagnosis (group 1, drug naïve, n = 23) or upon dopamine replacement (group 2, 1-6 years, n = 24; group 3, > 6 years, n = 16), compared with age-matched control subjects (group 4, n = 21). Assessment of the olfactory function was carried out in group 2 using the "Sniffin' Sticks" test. VGF immunoreactivity was present in GABAergic neurons and, on the lesioned side, it was reduced at 3 weeks and abolished at 6 weeks after lesion. Conversely, upon levopoda, VGF labeling was restored. In PD patients, VGF levels were reduced at the time of diagnosis (1504 ± 587 vs. 643 ± 348 pmol/mL, means ± S.E.M: control vs. naïve; p < 0.05) but were comparable with the controls after long-term drug treatment (> 6 years). A linear correlation was demonstrated between VGF immunoreactivity and disease duration, levodopa equivalent dose and olfactory dysfunction. Plasma VGF levels may represent a useful biomarker, especially in the early stages of PD.


Subject(s)
Neuropeptides/blood , Parkinson Disease/blood , Aged , Animals , Biomarkers/blood , Brain/metabolism , Dopamine/metabolism , Humans , Male , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , Smell
15.
Int J Mol Sci ; 20(19)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547145

ABSTRACT

In a previous proteomic study, we identified the neurosecretory protein VGF (VGF) as a potential biomarker for dementia with Lewy bodies (DLB). Here, we extended the study of VGF by comparing levels in cerebrospinal fluid (CSF) from 44 DLB patients, 20 Alzheimer's disease (AD) patients, and 22 cognitively normal controls selected from the Amsterdam Dementia Cohort. CSF was analyzed using two orthogonal analytical methods: (1) In-house-developed quantitative ELISA and (2) selected reaction monitoring (SRM). We further addressed associations of VGF with other CSF biomarkers and cognition. VGF levels were lower in CSF from patients with DLB compared to either AD patients or controls. VGF was positively correlated with CSF tau and α-synuclein (0.55 < r < 0.75), but not with Aß1-42. In DLB patients, low VGF levels were related to a more advanced cognitive decline at time of first presentation, whereas high levels of VGF were associated with steeper subsequent longitudinal cognitive decline. Hence, CSF VGF levels were lower in DLB compared to both AD and controls across different analytical methods. The strong associations with cognitive decline further points out VGF as a possible disease stage or prognostic marker for DLB.


Subject(s)
Lewy Body Disease/cerebrospinal fluid , Nerve Growth Factors/cerebrospinal fluid , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Female , Humans , Lewy Body Disease/pathology , Lewy Body Disease/physiopathology , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
16.
Neuroscience ; 380: 152-163, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29588252

ABSTRACT

While the VGF-derived TLQP peptides have been shown to prevent neuronal apoptosis, and to act on synaptic strengthening, their involvement in Amyotrophic Lateral Sclerosis (ALS) remains unclarified. We studied human ALS patients' plasma (taken at early to late disease stages) and primary fibroblast cultures (patients vs controls), in parallel with SOD1-G93A transgenic mice (taken at pre-, early- and late symptomatic stages) and the mouse motor neuron cell line (NSC-34) treated with Sodium Arsenite (SA) to induce oxidative stress. TLQP peptides were measured by enzyme-linked immunosorbent assay, in parallel with gel chromatography characterization, while their localization was studied by immunohistochemistry. In controls, TLQP peptides, including forms compatible with TLQP-21 and 62, were revealed in plasma and spinal cord motor neurons, as well as in fibroblasts and NSC-34 cells. TLQP peptides were reduced in ALS patients' plasma starting in the early disease stage (14% of controls) and remaining so at the late stage (16% of controls). In mice, a comparable pattern of reduction was shown (vs wild type), in both plasma and spinal cord already in the pre-symptomatic phase (about 26% and 70%, respectively). Similarly, the levels of TLQP peptides were reduced in ALS fibroblasts (31% of controls) and in the NSC-34 treated with Sodium Arsenite (53% of decrease), however, the exogeneous TLQP-21 improved cell viability (SA-treated cells with TLQP-21, vs SA-treated cells only: about 83% vs. 75%). Hence, TLQP peptides, reduced upon oxidative stress, are suggested as blood biomarkers, while TLQP-21 exerts a neuroprotective activity.


Subject(s)
Amyotrophic Lateral Sclerosis/blood , Biomarkers/blood , Neuroprotection/physiology , Peptide Fragments/blood , Adult , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Neuroprotective Agents/pharmacology , Peptide Fragments/pharmacology , Peptides/blood
18.
Front Cell Neurosci ; 11: 158, 2017.
Article in English | MEDLINE | ID: mdl-28626390

ABSTRACT

From the VGF precursor protein originate several low molecular weight peptides, whose distribution in the brain and blood circulation is not entirely known. Among the VGF peptides, those containing the N-terminus portion were altered in the cerebro-spinal fluid (CSF) and hypothalamus of schizophrenia patients. "Hence, we aimed to better investigate the involvement of the VGF peptides in schizophrenia by studying their localization in the brain regions relevant for the disease, and revealing their possible modulations in response to certain neuronal alterations occurring in schizophrenia". We produced antibodies against different VGF peptides encompassing the N-terminus, but also C-terminus-, TLQP-, GGGE- peptide sequences, and the so named NERP-3 and -4. These antibodies were used to carry out specific ELISA and immunolocalization studies while mass spectrometry (MS) analysis was also performed to recognize the intact brain VGF fragments. We used a schizophrenia rat model, in which alterations in the prepulse inhibition (PPI) of the acoustic startle response occurred after PCP treatment. In normal rats, all the VGF peptides studied were distributed in the brain areas examined including hypothalamus, prefrontal cortex, hippocampus, accumbens and amygdaloid nuclei and also in the plasma. By liquid chromatography-high resolution mass, we identified different intact VGF peptide fragments, including those encompassing the N-terminus and the NERPs. PCP treatment caused behavioral changes that closely mimic schizophrenia, estimated by us as a disruption of PPI of the acoustic startle response. The PCP treatment also induced selective changes in the VGF peptide levels within certain brain areas. Indeed, an increase in VGF C-terminus and TLQP peptides was revealed in the prefrontal cortex (p < 0.01) where they were localized within parvoalbumin and tyrosine hydroxylase (TH) containing neurons, respectively. Conversely, in the nucleus accumbens, PCP treatment produced a down-regulation in the levels of VGF C-terminus-, N-terminus- and GGGE- peptides (p < 0.01), expressed in GABAergic- (C-terminus/GGGE) and somatostatin- (N-terminus) neurons. These results confirm that VGF peptides are widely distributed in the brain and modulated in specific areas involved in schizophrenia.

19.
PLoS One ; 12(2): e0172724, 2017.
Article in English | MEDLINE | ID: mdl-28235047

ABSTRACT

VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-thioglucose obese mice. However, this anabolic role for VGF has not been supported by a number of subsequent studies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice and protected against diet-induced obesity. Similarly, ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this was due to a decrease in food intake, with no effect on energy expenditure. Subsequently NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vector to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental effects or associated functional compensation. Initially, hypothalamic over-expression of VGF in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks post-infusion hamsters had increased oxygen consumption and a tendency to increased carbon dioxide production; this attenuated body weight gain, reduced interscapular white adipose tissue and resulted in a compensatory increase in food intake. These observed changes in energy expenditure and food intake were associated with an increase in the hypothalamic contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides during development, as well as in the adult.


Subject(s)
Body Weight/drug effects , Energy Metabolism/drug effects , Neuropeptides/biosynthesis , Obesity/drug therapy , Weight Gain/drug effects , Animals , Body Weight/physiology , Cricetinae , Eating/drug effects , Eating/genetics , Gene Expression Regulation/drug effects , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice , Mice, Obese , Nerve Tissue Proteins/administration & dosage , Neuropeptides/administration & dosage , Neuropeptides/genetics , Obesity/genetics , Obesity/metabolism , Oxygen Consumption/drug effects , Peptide Fragments/administration & dosage , Phodopus , Rats , Weight Gain/physiology
20.
PLoS One ; 11(10): e0164689, 2016.
Article in English | MEDLINE | ID: mdl-27737014

ABSTRACT

VGF mRNA is widely expressed in areas of the nervous system known to degenerate in Amyotrophic Lateral Sclerosis (ALS), including cerebral cortex, brainstem and spinal cord. Despite certain VGF alterations are reported in animal models, little information is available with respect to the ALS patients. We addressed VGF peptide changes in fibroblast cell cultures and in plasma obtained from ALS patients, in parallel with spinal cord and plasma samples from the G93A-SOD1 mouse model. Antisera specific for the C-terminal end of the human and mouse VGF proteins, respectively, were used in immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), while gel chromatography and HPLC/ESI-MS/MS were used to identify the VGF peptides present. Immunoreactive VGF C-terminus peptides were reduced in both fibroblast and plasma samples from ALS patients in an advanced stage of the disease. In the G93A-SOD1 mice, the same VGF peptides were also decreased in plasma in the late-symptomatic stage, while showing an earlier down-regulation in the spinal cord. In immunohistochemistry, a large number of gray matter structures were VGF C-terminus immunoreactive in control mice (including nerve terminals, axons and a few perikarya identified as motoneurons), with a striking reduction already in the pre-symptomatic stage. Through gel chromatography and spectrometry analysis, we identified one form likely to be the VGF precursor as well as peptides containing the NAPP- sequence in all tissues studied, while in the mice and fibroblasts, we revealed also AQEE- and TLQP- peptides. Taken together, selective VGF fragment depletion may participate in disease onset and/or progression of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Nerve Growth Factors/blood , Neuropeptides/blood , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cells, Cultured , Chromatography, High Pressure Liquid , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Immunohistochemistry , Male , Mice , Mice, Transgenic , Middle Aged , Nerve Growth Factors/analysis , Neuropeptides/analysis , Spectrometry, Mass, Electrospray Ionization , Spinal Cord/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...